Pengembangan Algoritma C4.5 Berbasis Particle Swarm Optimization untuk Penentuan Kelayakan Asuransi

نویسندگان

چکیده

Tujuan penelitian ini adalah untuk Pengembangan Algoritma C4.5 Berbasis Particle Swarm Optimization Untuk Penentuan Kelayakan Asuransi. metode logistic regresion, decision trees, k-nearest neighbors, naïve bayes dan support vector machines. Model tersebut akan menentukan atau memprediksi status konsumen dimasa mendatang. Observasi yang mirip juga pernah dilakukan, tetapi dengan cara berbeda. Pada penilitian ini, digunakan algoritma klasifikasi berbasis (PSO), hasil ketepatan diinginkan lebih bagus dibandingkan hanya memakai mengatasi permasalahan pada kasus pemilihan produk asuransi. dapat disimpulkan bahwa nilai akurasi didapatkan model PSO 98.93% jika yaitu 97.84%. Dari perbedaan antara kedua senilai 0.4%. Selagi penelaahan menggunakan ROC curve bagi ialah,untuk AUC 0.970 urutan diagnosa Excellent Classification, 0.968 Classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Klasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization

Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...

متن کامل

Particle Swarm Optimization

At its meeting in Savannah, Georgia on February 14th, the IEEE Technical Activities Board voted overwhelmingly in favor of the Neural Networks Society's motion to change its name to the COMPUTATIONAL INTELLIGENCE SOCIETY. To become official, the name needs to be approved by the Board of Directors which is expected to meet on June 20, 2004. As many of you may remember, the motion to change NNS's...

متن کامل

Polymorphic Particle Swarm Optimization

In recent years a swarm-based optimization methodology called Particle Swarm Optimization (PSO) has developed. If one wants to apply PSO one has to specify several parameters as well as to select a neighborhood topology. Several topologies being widely used can be found in literature. This raises the question, which one fits best to your application at hand. To get rid of this topology selectio...

متن کامل

Orthogonal Particle Swarm Optimization

The Orthogonal arrays are helpful in guiding the heuristic algorithms to obtain a good solution when applied to NP-hard problems. This chapter deals with a new variant of PSO named Orthogonal PSO (OPSO) for solving the multiprocessor scheduling problem. The objective of applying the orthogonal concept in the basic PSO algorithm is to enhance the performance when applied to the scheduling proble...

متن کامل

Darwinian Particle Swarm Optimization

Particle Swarm Optimization (PSO), an evolutionary algorithm for optimization is extended to determine if natural selection, or survival-of-thefittest, can enhance the ability of the PSO algorithm to escape from local optima. To simulate selection, many simultaneous, parallel PSO algorithms, each one a swarm, operate on a test problem. Simple rules are developed to implement selection. The abil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Syntax Admiration

سال: 2021

ISSN: ['2722-7782', '2722-5356']

DOI: https://doi.org/10.46799/jsa.v2i3.204